Code: 20BS1402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

ELECTROMAGNETIC FIELDS & WAVES (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	Derive Laplace's and Poisson's equation.	L3	CO1	7 M				
	b)	Determine the electric field intensity due to	L3	CO2	7 M				
		infinite line charge, at a point perpendicular							
		to its plane and at a given distance from the							
		line charge from first principles.							
OR									
2	a)	Point charges $Q_1 = 5 \mu C$ and $Q_2 = -4 \mu C$ are	L3	CO1	7 M				
		placed at (3, 2, 1) and (-4, 0, 6) respectively.							
		Determine the force on Q_1 .							
	b)	Show that $E = -\nabla V$.	L3	CO2	7 M				
UNIT-II									
3	a)	Using Biot-Savart's law, Derive the	L3	CO2	7 M				
		magnetic field intensity on the axis of a							
		circular loop with radius R and carrying a							
		steady current I.							

	_		ī	1				
	b)	A circular loop of radius $\rho = 5$ m causes a	L3	CO2	7 M			
		current of 10A. Solve the magnetic field						
		intensity \vec{H} at point (0,0,0.5).						
OR								
4	a)	Develop the expression for magnetic field	L3	CO2	7 M			
		Intensity at a point 'P' due to an infinite line						
		current element.						
	b)	Derive the equation to show that curl of	L3	CO2	7 M			
		magnetic field intensity in equal to current						
		density.						
				l l				
		UNIT-III						
5	a)	Write and explain Maxwell's equations in	L2	CO3	7 M			
		integral form for time varying Fields.						
	b)	In a material for which $\sigma = 5.0$ s/m and	L2	CO3	7 M			
		\in r = 1, the electric field intensity is						
		$E = 250 \text{ Sin}10^{10} \text{t}$ (V/m). Predict the						
		conduction and displacement current						
		densities, and the frequency at which they						
		have equal magnitudes.						
		OR						
6	a)	State and explain Faraday's laws of	L2	CO3	7 M			
		electromagnetic induction.						
	b)	Explain (i) Conduction Current.	L2	CO3	7 M			
		(ii) Displacement current.						
UNIT-IV								
7	a)	Derive the expression for attenuation and	L3	CO3	7 M			
'	(a)	phase constants of uniform plane wave.	L 3		/ 1/1			
		phase constants of uniform plane wave.						

			1			
	b)	If $\varepsilon_r = 9$, $\mu = \mu_0$ for the medium in which a	L3	CO3	7 M	
		wave with frequency $f = 0.3GHz$ is				
		propagating, determine propagation constant				
		and intrinsic impedance of the medium				
		when i) $\sigma = 0$ and ii) $\sigma = 10$ mho/m.				
OR						
8	a)	State and prove Poynting theorem.	L2	CO3	7 M	
	b)	For good dielectrics derive the expression	L3	CO3	7 M	
		for α , β , V_p and η .				
		UNIT-V				
9	a)	Define and derive the reflection coefficient	L3	CO4	7 M	
		of a wave which is incident normally on a				
		dielectric.				
	b)	Calculate the depth of penetration δ , of an	L3	CO4	7 M	
		EM wave in copper at f= 60 Hz and f=100				
		MHz . For Copper , $\sigma = 5.8 \times 10^7$ mho /m ,				
		$\epsilon_r = 1, \mu_r = 1.$				
		OR				
10	a)	Define and derive the transmission	L3	CO4	7 M	
		coefficient of a wave which is incident				
		normally on a dielectric?				
	b)	What is Brewster Angle? Derive the	L3	CO4	7 M	
		expression for Brewster angle.				
	<u> </u>	ı	·	1		